ROTEOR	Tatsuoka, Kikuni K.: Tatsuoka, Maurice M.
TITIE	Spotting Incorrect Rules in Signed-Number Arithnetic by the Individual Consistency Index.
-INSTITOTION	Illinois oniv., Orbana. Computer-Based Education
	Pesearc'
SPOUS AGENCY	Office of Maval Research, Arlington, Va. Personnel and Training Research Programs Office.
REPORT MO	CERL-RR-81-4
POB DATE	Aug 81
GRamt	N000-14-79-C-0752
NOTE	49 p .
EDRS PRICE	HP01/PC02 Plus Postage.
DESCRIPTORS	*Computer Assiste ${ }^{\text {a }}$ Testing: *Criterion Referenced
	Tests: Grade 8: Juaior High Schools; *Response Style
	(Tests) : *Secondary School Mathematics: Test
	Validity
IDENTIPIERS	*Individualized Coasistency Index: PLATO: *Response
	Patterns

ABSTRACT

Criterion-referenced testing is an inpcrtant area in the theory and practice of educational measurement. This study denonstrated that even these tests must be closely examined for construct validity. The dinensionality of a dataset will be affected by the examinee's cognitive processes as well as by the nature of the content donai?. The nethods of extracting a unidimensional subset fron an achievenent dataset were studied. a second purpcse was to apply a general technique for detecting aberrant response patterns derived fron wrong rules of operation. The Individual Consistency Inder (ICI) was found effective in detecting the anomalcus response patterns resulting from some misconceptions.o However, it reguires repeated measures. Applicability to tests that do not have several parallel itels to measure the performance of a single task will be ifmited. Although computerized error diagnostic prograns can identify misconceptions possessed by a student in the very specific donain of aritheetic, ICI can be appilicable to more general donains. It can detect candidates to route to the expensive error-diagnostic prograns. (Author/Dut)

[^0]

SPOTTING INCORRECT RULES \mathbb{N} SIGNED -NUMBER ARITHMETIC bY THE INDIVIDUAL CONSISTENCY INDEX

US DEPARTMENT OF EDUCATION
NATIONAL INSTITUTE OF EDUCATION GOUI ATIONAL RESOURCES INFORN in CENTER ERIC:
KIKUMI K. TATSUOKA
MAURICE M. TATSUOKA
THis forumph hat been reproduced as

athentatity +1
Miner ethatificu howe bee I mode to improve marrattirtion cole
- Petit at vim or captions stated in this ace boxthorn of belay

Approved for public release; distribution unlimited. Reproduction in whole or in part permitted for any purpose of the United States Government.

This research was sponsored by the Personnel and Training Research Program, Psychological Sciences Division, Office of Naval Research, under Contract No. N000-14-79-C-0752.
Contract Authority Identification Number NR 150-415
-PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY
Tutanaka, k

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC) '
sECuRITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

replicated by another dataset whose test was parallel but not identical to the previous one. Although computerized error diagnostic programs can identify misconceptions possessed by a student in very specific 'วmains of arithmetic, ICI can be applicable to more general domains and detect possible candidates to route to the expensive error-diagnostic programs.

Abstract

This study demonstrates that even a criterion-referenced test, in which items are chosen from a single content domain, requires a close examination of construct validity. The Individual Consistency Index (ICI) is effective in detecting anomalous response patterns resulting fromsome misconception(s). The subset cibtained by deleting the responses which were spotted by ICI showed a higher inidimensionality. The same result was replicated by another dataset whose test was parallel but not identical to the previous one. Although computerized error diagnoatic programs can identify misconceptions possessed by a student in the very specific domain of arithmetic, ICI can be applicable to more general domains and detect possible candidates tc route to the expensive error-diagnostic programs.

Errata

Replace reference of Tatsuoka, K. K., \& Tatsuoka M. M. (Research Report 81-4) with

Tatsuoka, K. K., \& Tatsuoka, M. M. Detection of aberrant response patterns and their effect on dimensionality (Research Report 80-4). Urbana, Ill.: University of Illinois, Computer-based Resea-ch Laboratory, April :980.

Acknowledgment

The authors wish to acknowledge the kind cooperation extended to us by the people involved with this report. Bob Baillie programmed the lessons and data cullection and analysis routines, along with his assistant, David Dennis. Mary Klein gave insight and meaning to many things as a teacher of the children whom we seek to help. $\mathrm{K} y$ Lipschutz did the la;outs and Louise Brodie did the typing.

Spotting Erroneous Rules of Operation

by the Individual Consistency Index

Introduction

Iter Response Curve Theory (IRT) has proved its important role in modern testing practices such as computerized adaptive iesting, in which each examinee takes a different set of items. The student's ability level is estimated and located as a point on a continum. However, a drawback of IRT models that are resently available in practice is the conistraint of unidimensionality on datasets (Lord \& Novick, 1968). Reckase (1979) warned of and demonstrated the serious consequences for parameter estimation resulting from the violation of unidimensionality. It has been observed that the scores obtained from most achievement tests, unlike ability tests, are affected by two or more latent trait variables.

Moreover, Tatsuoka and Bi renbaum (1979,1981) showed that the dimensionaltiy of a dataset obtained from the middle learning stages, when the students are still far from mastery, was maltidimensional even though the test items are clearly drawn from a single domain. Their result indicates that a close examination of the construct validity of criterion-referenced tests is necessary.

Brown \& Burton (1978) developed an error-diagnostic model for whole-number subtraction problems. Their model "BUGGY" showed that wrong rules can yield the correct answers in some test items. Birenbaum \& Tatsuoka (1980) found that 1 - 0 scoring based simply on right or wrong answers caused sertous problems when erroneous rules of signednumber operations were used by many examinees.

Using data from a 64 -item test consisting of four parallel subtests of 16 items each, Birenbaum \& Tatsuoka first did a principal componeats analysis on the original data -- with the items scored 1 or 0 in the usual manner. Next, the data were modified by giving a score of 0 when an item was correctly answered presumably by use of an erroneous rule, and another principal component analysis was done. The change between the two analyses was dramatic. The dimensionality of the data became much more clearcut with the modified data. The item-total correlations became much higher, while the means of the 16 tasks (each represented by four parallel items) did not change significantly. The above phenomenon anggests why some achievement tests cannot by treated as unidimensional even though the items are taken from a single content domain.

One of the purposes of this paper is to investigate methods of extracting a unidimensional subset from an achfevement dataset. Error analysis, which is usually performed by a series of clinical interviews and intuitive interpretation of the student's responses to the test items is a cumbersome work. At present, there are only a very few computer programs avallable for providing diagnoses of misconceptions
possessed by students, such as Brown and Burton's "BUGGY", and "SIGNBUG" developed by Tatsuoka et al, (1980). But they are expensive, and moreover, they can handle caly specific areas of arithmetic. Our intention is to find a more general technique applicable to other content areas in order to detect aberrant response patterns whicil are derived from erroneous rules of operation (or bugs).

The second purpose is to replicate the result described in the Birenbaum-Tatsuoka study by applying the general technique for detecting aberrant response patterns derived from wrong rules of uperation.

It turned out that the index, Individual Consistency Index (ICI) introduced in Tatsuoka \& Tatsuoka (1980) is very effective for spotting erroneous rules of operation in signed-number couputation problems: The responses yielded by wrong rules are charac: rized by having low scores and high ICI values. Moreover, the subset obtained from the original dataset by deleting the subjects who have low total scores and high ICI values demonstrated exactly the same phenomenon, that is, the dimensionality of the subset became nearly unidimensional, as the modified data did. The structure of the subset in terms of cognitive performance is interesting. It consists of the responses profuced by using the right rule and errors probably comatted by students randomly or inconsistently. The result will be useful for understanding the meaning of dimensionality of achievement data. It also shows the importance of construct validity, even in criterion referenced testing of the cosnitive aspect of performance, and that the traditional means of item analysis that are based on taking the variances of binary scures and content analysis into consideration are not enough for constructing test thems that are capable of diagnosing misconceptions.

Method and Procedure
Is 1-0 scoring justifiable?
A test containing 64 signed-number addition and subtraction problems, consisting of four parallel subtests of 16 items each, was administered to 127 eighth graders at a local junior high school after the instruction was completed. (This test will be referred to as the "November data" hereafter.) Each item lin the tent was carefully related so as to maximize the capability of diagnosing erroneous rules of operation. In signed-number computation, 98% of students' responses are summarized by four types: adding or subtracting two absolute values and putting the sign of plus or minus on answers. Nine problem types in subtraction and six in addition (see Appendix I) are the necessary minimum number of items in order to maintain the error diagnostic capability for providing a specific description of a vast majority of popular errors.

Tatsuoka et al. (1980) developed an errur-diagnostıc system called "SIGNBUG" for signed number problems on the PLATO system at the University of Illinols. With this computer program, the performance of the 127 students was thoroughly analyzed.

The same test was administered to 180 seventh graders who were still far frin the mastery stage and exhibited a variety of confusion in the material. (Data from this test whll be referred to as the "January datri" hereafter). The responses to the items in the January data were also analyzed by "SIGNBUG" and their complete erroneous rules of operation with those from the November data are described in Appendices I and II. Actually we have found many mare erroneous rules, incomplete ones and those applicable only to addition problems, but the number of bugs in the list is limited, to the erroneous cules that appeared in subtraction problems. The addition items form another dimension by both a principal components analysis, and a multidimensional scaling (Birenbaum \& Tatsuoka, 1980) after the modification procedure described earlier was caken. Therefore we chose the subtraction problems for our stidy.

Insert Table 1 about here

Table 1 is the list of the binary scores on 15 tasks (i.e., problem types) yielded by the 45 bugs given in Appendix II. The rightmost column shows the total scores on 15 tasks. The first and second numbers in the pareutheses are the total scores on addition and subtraction tasks, respectively. The bottom line of Table l contains the total number of 1 's for each item type. For example, for the task $-16-(-7)$, the correct answer is fielded by 26 out of 42 erroneous rules. If the data is collected while many students are confused by a variety of errors, then this task, No. 8, will have the highest number of 1 's. Thus, although task No. 8 turned out to be the "easitst" in the January data, this must be partly attributed to the fact that the correct answer can be obtained by so many erroneous rules. Table 2 shows the tank orders in the proportion correct of 12 tasks for the January and the modified November data (as described earlier). However, the

Insert Table 2 about here

counterpart of this task, $-6-(-8)$ has only twelve 1 's out of 42 . These items should almost be equally diff'cult with respect to the conceptualization of the subtraction problems because of the teaching method. But their positions of the item difficulty order in the datasets (both November and January data) are quite different. The descending order of the total l's over 15 tasks in Table 1 is 8, 15, 7, $16,11,5$. These six items are in the top seven items having the largest number of the total 1 's in the January data. As mentioned earlier, 80\% of the examinees in the January data used a variety of erroneous rules of operation.

Importance of Item Ordering
Harnisch and Linn, (1981) classified indices that measure the degree to which an individual response pattern is atypical into two different types. One type consists 0 , those forwuiated by using the orders of

Table 1
Observed Complete Rules and their Response Patterns for Signed Number Addition and Subtraction Problems

$\begin{array}{llllllllllllll}\text { Total } & 1 ' s & 24 & 28 & 26 & 30 & 26 & 32 & 12 & 10 & 10 & 20 & 26 & 10\end{array} 10$
Proportion
of l's to
\# of bugs
$* \frac{3}{22} \frac{7}{22} \frac{5}{22} \frac{9}{22} \frac{5}{22} \frac{11}{22} \quad \frac{12}{42} \frac{10}{42} \frac{10}{42} \frac{20}{42} \frac{26}{42} \frac{10}{42} \frac{10}{42} \frac{9}{42} \frac{18}{42}$ rule for addition problems.

Table 2
Rank Orders of the Task Difficulties (from Easy to llard)
in Two Datasets ${ }^{\text {a }}$

Task Type	Hovember $^{\mathbf{c}}$ Hodified	January Data $^{\text {d }}$
$12+-3$	3	7
$-14+-5$	9	12
$-3+12$	5	6
$-5+7^{b}$	13	3
$3+5$	10	11
$-6+4$	14	5
$3-6$	6	9
$-16-(-7)$	7	8
$-6-(-8)$	1	1
$-3-+12$	12	2
$2-11$	15	10
$9-(-7)^{b}$	11	4
$1-(-10)$	4	
$-7-9$	2	
$-12-3^{b}$	3	

${ }^{\text {a }}$ The task type $6+4$ (item number 6 in Appendix I) has been omitted.
${ }^{\mathrm{b}}$ These tanks were note included in the January test.
${ }^{c}$ The November order is based on the difficulties estinated from the IRT model.
${ }^{\mathrm{d}}$ The January order is based on the actual proportion answering eaci item correct.
difficulty and the other comprises those based on the comparison of an individual response pattern to some kind of a standard response pattern. The former group consists of Van der Flier's index (1977), the Norm Conformity Index (Tatsuoka \& Tatsuoka, 1980) and γ index (Sato, 1972). The latter contains Sato's Caution index (Sato, 1975), Linn \& Harniseh's (1981) modified caution index and Kane \& Brennan's (1978) coefficient of agreement. A weighted sum of NCI leads to Cliff's (Cliff, 1978) Consistency Index, $C_{t 2}$ (Tatsuoka \& Tatsuoka, 1980) while the caution index has an algebraic relationship to Loevinger's homogeneity index (Takeya, 1978).

Although this classification is useful for pointing out a certain conceptual difference between the two types of indices, the fact remains that both types are dependent on the order in which the items are arranged in calculating them. This dependence on item order is made explicit in the case of the Norm Conformity Index (NCI), whose definition calls for arranging the items in descending order of difficulty for ail arbitrary norm or reference group. The extent to which a given individual's response pattern then resembles a Guttman vector (in which all zeros precede all l's) with the same number of 1 's is what the NCI measures. The reference group may be the group $J f$ which the individual is a member, or it may be some other group of interest to the researcher.

On the other hand, the caution index was defined by Sato (1975) in the context of a data matrix in which the items are arranged in ascending order of difficulty for the group at hand and the individuals are arranged in descending order of total score. (Such a matrix is called an S-P table.) The question of dependence on item order does not normally arise since the caution index C_{i} is defined for this one

* particular arrangement of items only. It is the complement of the ratio of two covariances that will be specified later. C_{i} measures the extent to which the i-th individual's response pattera is atypical of the group of which he/she is a member. However, there is no reason why we cannot speak of the atypicality of an individual's response pattern compared to the average response pattern of some group other than the one to which he/she belongs. The order of items will then be different from before, and the value of C_{1} will change. Thus the caution index, too, is dependent on iter order.

We wish to demonstrate the extent and way in which NCI and C_{i} are item-order dependent with reference to the set of 12 items shown in Table 2, that are common to both the November data and the January data, but have different difficulty orders in the two datasets. However, it may be useful first to give brief descriptions of the calculations for the two indices by using a smaller numerical example.

Example. Let us refer back to the 43 x 9 matrix of binary scores obtained by using the correct rule and 42 erroneous rules for solving nine subtraction problems, displayed in the right-hand panel of Table 1. We now pretend that this is a data matrix for a group of 43 examinees who took a nine-item test, and denote it as

$$
Y=\left(y_{1 j}\right), \quad 1,2 \ldots, 43 ; j=1,2, \ldots, 9
$$

Zach element of the vector of column totals [y.1, y.2,... y.g] is one greater than the corresponding column total shown in Table 1 (because the totals there excluded the 1 's in the first row since that row represented the correct rule of operation, whereas Table 1 was concerned with l's generated by erroneous rules). However, since we need to arrange the items in monotonic order of difficulty (descending order for NCI, ascending for C_{1}), let us renumber the items from 1 to y in the order they are to occur in the formulas.

For calculating NCI, then, the item order is ($2,9,13,12,4,1$, $16,7,8$). We take the second row (for Bug \#3) as the response pattern of the examinee whose NCI we want to calculate. When the items are rearranged as just indicated, the response vector becomes

$$
y_{3}=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right],
$$

whose elements we denote as $y_{31}, y_{32}, \ldots, y_{39}$ in the order they occur here.

We also need the total score yo., which is 5 in this case. In general,

$$
z_{1}=\sum_{j=1}^{n} y_{i j}
$$

where n (= 9 here) is the number of items. The NCI for individual 1 may now be defined as

$$
(\mathrm{NCI})_{1}=2 U_{1 a} / U_{1}-1,
$$

where

$$
u_{1 a}=\sum_{j=1}^{n-1} \sum_{k=j+1}^{n}\left(1-v_{1 j}\right) y_{1 k}
$$

and

$$
u_{1}=y_{1}\left(n-y_{1}\right)
$$

[Verbally, $U_{\text {ia }}$ means the sum of all l's to the right of each 0 in the vector y_{1}, added over all 0 's; this represents the number of (0,1) pairs that occur in $Y_{1} \cdot U_{1}$, on the other hand, represents the total number of $(0,1)$ and $(1,0)$ pairs in Y_{1}.]

For our example,

$$
U_{3 a}=2+2+2=6
$$

(because there are three $0^{\prime} s$, each with two $l^{\prime} s$ to its right; the last 0 does not have any number to its right and hence contributes nothing to the sum), while

$$
U_{3}=(5)(4)=20
$$

Hence,

$$
(\mathrm{NCI})_{3}=(2)(6) / 20-1=-.4
$$

(The negative sign indicates that the response pattern X_{3} is closer to the reverse Gut man vector $\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 0 & 0 & 0\end{array}\right]$ than to the Gutman vector $\left[\begin{array}{lllllllll}0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$, which agrees with our impression on looking at y_{3}.)

We now illustrate the calculation of C_{i} for the sane response pactern. Since the formula calls for the items to be arranged in ascending order of difficulty, we reverse the response vector to get

$$
X_{3}=\left[\begin{array}{lllllllll}
0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

We also need the vector of column totals

$$
\begin{aligned}
y_{n} & =\left[y_{.1}, y .2, \ldots, y_{.9}\right] \\
& =[26,20,18,12,11,10,9,9,2]
\end{aligned}
$$

Finally, the reverse Guttman vector rith five 1 's is

$$
y_{3} S=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Wit' a elements of these three vectors appropriately symbolized, and ' 3 ' = ed by 1 for generality, the formula for the caution index 18

$$
c_{1}=1-\frac{\operatorname{cov}\left(y_{i j}, y_{. j}\right)}{\operatorname{cov}\left(y_{i j}^{s}, y_{. j}\right)}
$$

Making the substitutions, we get

$$
\begin{aligned}
\operatorname{cov}\left(y_{3 j}, y_{. j}\right)= & {\left[\sum_{j=1}^{9} y_{3 j} y_{\cdot j}-y_{3} \cdot \sum_{j=1}^{9} y_{. j} / 9\right] / 8 } \\
= & {[(0)(26)+(1)(20)+(1)(18)+\ldots+(1)(2)} \\
& -(5)(26+20+18+\ldots+2) / 9] 8 \\
= & -.875
\end{aligned}
$$

and

$$
\operatorname{cov}\left(y_{3 j}, y_{\cdot j}\right)=\left[\sum_{j=1}^{9} y_{j}^{\xi_{j}} y_{\cdot j}-y_{3}^{9} . \sum_{j=1}^{9} y_{\cdot j} / 9\right] / 8
$$

$$
\begin{aligned}
= & {[(1)(26)+(1)(20)+(1)(18)+(1)(12)+(1)(11)+0} \\
& -(5)(26+20+18+\ldots+2) / 9] 8 \\
= & 2.75
\end{aligned}
$$

Hence, $C_{3}=1-(-.875) / 2.75=1.318 \quad$.
Item-Difficulty Orders in Early and Late Learning Stages.
We now examine the response patterns of three students taken from the January dataset, exhibit their NCI and C_{1} values with items arranged in difficulty order for that dataset as well as in difficulty order for the November dataset, and note the extent and nature of the differences between the corresponding values. Alihough the two datasets are based on different samples, the results nevertheless give a general idea of the effect of using the difficulty orders in early and late learning s^{*} ages. The relevant information is summarized in Tables 3 and 4.

Insert Table 3 about here
Student \#37 is a very good student, who did most of the addition problems correctly, as seen in Table 4. About the only trouble she had was confusing parentheses with absolute-value bars, which is a relatively minor and edsily remedied misconception. Yet, precisely because her misconception is a sophisticated one for students at this stage of learning, her response pattern is rare and atypical of the group. She thus gets a low NCI (-.10) and a high C_{2} (.93), which are misleading because they imply that she needs to be cautioned and given remedial work.

Insert Table 4 about here

On the other hand, Students 12 and \#30 possess misconceptions that are rather common in this dataset. Hence, their NCI values are relatively high (. 62 and .69 , respectively) while their caution indices are moderate and low(. 43 and .16), so that these students are nct flagged for further attention. Yet, these students (like many others in the January dataset) had considerable trouble with addition problems, as evident from Table 4. Therefore, their not being cautioned was inappropriate, and was due only to their errors' being fairly common for their group.

To confirm the above interpretations, let us now look at the r.CI and C_{1} values for these three students when the items are arranged in difficulty order for the November dataset as modified in the manner described eariler. That is, we now inquire how anomalous each of these students response patterns would look if they had been members of the November group, who were close to mastery stage. The answer is, the NCI for Student $\$ 30$ becomes the largest of three (.67), while Students ${ }^{(37}$

Table 3
Response Patterns of Four Subtests for Students \#37, \#12 and \#30

Table 4
Error Patterns for Subject \#37, \#12 and \#30

and 12 have similar values (. 49 and .44). Their caution indices are . 30 , . 60 and .44 for Students $\# 37,12$ and 30 , respectively. As expected \#37 has the smallest caution index, reflecting the fact, already mentioned, that her errors were more typical for students close to the mastery stage than the beginners in the January dataset.

The foregoing illustrative examples should have underscored the undesirability (for error-diagnostic purposes) of the dependence of such indices as NCI and C_{1} on the particular difficulty order of items that is used in computing them. Clearly, what is needed is an index that does not depend on the item difficulty order for a group but on that for each individual in his/her own right.

The Individual Consistency Index (ICI)
The Individual Consistency Index (ICI) depends on the task difficulties as determined by an individual student's state of knowledge. Its definition calls for the existence of two or more parallel subtests, and the sets of parallel items are arranged in ascending order of task difficulties for the student in question -i.e., in the order of the student's subscores on the separate tasks such as the 12 shown in Table 3, where each task is represented by four parallel items. The actual calculation of ICI is the same as that for NCI - or, more precisely, for a group of m subjects, where m is the number of parallel subtests.

Its value is large to the extent that the individual remains in the same state, and hence responds to similar items in the same way -- i.e., using the same rule. if ICI is low, on the other hand, then the individual is probably not sure how the problems can be solved so he/she tries various strategies to respond to the questions. Or, he/she is careless and makes a considerable number of random errors. Thus, ICI can serve better than NCI and the Caution Index as an index for flagging individuals who probably require further attention for remediating their errors and/or making finer diagnoses.

Table 5 is a sumary of the error patterns commetted by the 127 students in the November data, divided into four subgroups by the following criteria: (1) students whose scores are higher than 52 (the highest total score in Table lis 13. Therefore 4×13 is taken as a criterion) and ICI values are greater than or equal to .90; (2) those whose scores are lower than or equal to 52 and ICI values are greater than or equal to 90 ; (3) those who have scores hightr than or equal to 52 and have ICI

values lower than .90; (4) those whose scores are lower than or equal to 52 and ICI values are lower than . 90 .

Insert Table 5 about here

The error types and their frequencies are shown in four sections of the table. As stated in the table, a number sign ($\left.{ }^{(}\right)$in front of an error pattern represents the scores adjusted for both addition and subtraction problems (Birenbaum \& Tatsuoka, 1980). The question marks in front of the error patterns stand for the scores adjusted for subtraction problems, even though rules were equivocal. The detailed description of adjusting criterion is given in Bi renbaum \& Tatsuoka. The point is that the modified dataset improved the approach to unidimensionality drastically. Moreover, parameter estimation for the two parameter logistic model by maximum likelihood (using the computer program GETAB written by Robert Bailie) was processed successfully with the modified dataset while the original dataset failed do yield finite estimates.

It is interesting to note that Category 2 contains most erroneous patterns with high consistency. Con the other hand, Categories 1 and 3 consist of patterns in which the right rule appears at least once and the other elements are zeros. The zeros mean that either the response patterns are inconsistent or that rules are so complicated that our error-diagnostic system could not determine them specifically. But from the error patterns, and a close examination of the generated error vectors in our error-diagnostic system, the zeros in Categories 1 and 2 are mostly due to random errors. Therefore we can safely conclude that the structure of the unidiaensional subset consists of the responses that result from using the right rule, plus random errors.

Replication of the Result Obtained from the November Data

The November data were obtained from th graders in 1979. A year later, a new group of 161 8 th graders took a $64-1$ ten signed-number addition and subtraction est that wee parallel to the November test. The test wad administered right after the teachers (who also taught the students in the November data) completed their instruction. The teachers used exactly the same teaching method, materials and quizzes as those of the last year. The only difference in the new data, the March data, is that the numbers in the 16 tasks are slightly changed as shown in Appendix V. Table 6 is a summary of the classification of error patterns by ICI and total scores.

Insert Table 6 about here

The result again indicates that ICI is a useful index for extracting a unidimensional dataset by classifying the erroneous patterns into Category 2. Also the data structure of the extracted unidimensional subset in Table 6 confirms that the responses consist of

Error Patterns Causing a Mess in Dimensionality of Nine Subtraction Tasks (36 items)

Category 1	Category 2		
Error Pattern Frequency		Error Pattern	Frequency
(1) (1) (1) (1) 15		(5)(5) (5) (5)	4
0 (1) (1) (1)		0 (5)(5)(5)	1
(1) 0 (1)(1)	\#	0 0 (5) (5)	1
(1) (1) 0 (1) 2	\#	(16)(16)(40)(16)	1
(1) (1) (1) 0		(5)(40)(5)(5)	1
00 (1)(1)	\#	(16)(16)(5)(16)	1
0 (1) (1) 0	\#	(16)(16)(16) 0	1
(1) 0 (1) 0	\#	(16) (40) (16) (16)	1
0 (1) 0 (1)	\#	(40) (40) (40) (40)	2
(1) 000		(40) 0 (5) (5)	1
0 (1) 00	\#	0 (40) (16) (5)	1
00 (1) 0	*	(5) (40) (40) (40)	1
(1) 00 (1)	\#	(40) (40) (40)(16)	2
(40) (1) (1) (1)	,	O (40)(16)(16)	1
$0 \quad 0 \quad 0$	+	(40) (40)(23)(23)	1
	,	(19)(19)(19)(19)	1
Toral No. of Stu. 41	\#	0 (19)(19)(19)	1
		0 0 (40) (40)	1
Scores adjusted		0 (40) $0 \quad 0$	1
		(6) (6) (6) (6)	1
Performance on addition		(15)(15)(15)(15)	2
problems was not consistent		(4) (4)(4)(4)	1
		(7) (7) (7) (7)	1
Scores adjusted for sub-		(43)(43)(43)(43)	2
traction problems, even	\#	0 0 0 (5)	1
tnough rule were equivocal		Total Nio. of Stu.	32

Category 3		Category 4			
Error Pattern	Frequency		Error	Pattern	Frequency
(1) (1) (1) (1)	$5^{\text {a }}$		00	00	7
0 (1) (1) (1)	5	?	00	0 0	1
(1) 0 (1) (1)	4	?	00	0 (1)	1
(1) (1) 0 (1)	2	?	0 0	(1) 0	1
(1) (1) (1) 0	1		0 (1)	00	1
0 0 (1) (1)	3	?	00	0 (5)	1
0 (1) 0 (1)	3		00	(23) (23)	1
(1) (1) 00	2	\#	00	(40) (40)	1
0 (1) (1) 0	1	*	00	0 (19)	1
(1) 0 (1) 0	1		00	(11)(1)	1
0 (1) 00	1		0 (1)	0 (1)	1*
0 0 0 (1)	4	\#	0 (1)	(1) (1)	1*
0 0 (1) 0	1		0 (1)	(1) (1)	1
(40) 000	1		Total	No. of S	u. 15

(1) means that the rigit rule is used for answering to subtraction problems. ${ }^{\text {a }}$ Since ICI is calculated over 16 casks, if performance on addition problems is not consistent, then the error pattern falls into Category 3 peven though the error pattern for subtraction is identical.

Table 6
Replication of the result obtained from the November Data: N $=161$, Classification of Bugs

Category 1		Category 3	
Error Pattern	Frequency	Error Pattern	Frequency
(1) (1) (1) (1)	32	(1) (1; (1) (1)	2
0 (1) (1) (1)	7	(1) (1) 0 (1)	1
(1) 0 (1) (1)	5	0 (1) (1) (1)	2
(1) (1) 0 (1)	6	(1) (1) 00	2
(1)(1) (1) 0	4	0 (1) (1) 0	7
(1) (1) 00	1	00 (1) (1)	2
(1) 0 (1) 0	1	(1) 0 (1) 0	i
(1) 00 (1)	1	(1) 00 (1)	1
0 (1) (1) 0	3	(1) 000	3
0 0 (1) (1)		0 (1) 00	1
0 (1) 0 (1)	1	0 0 (1) 0	4
(1) 000	1	$\bigcirc 00$ (1)	5
000 (1)	1	$0 \quad 0 \quad 0 \quad 0$	6
0000	2		
(1)(11)(1)(11)	1	Total No. of	47

Total Ho. of Stt: 68

Category 2

Error Pattern	Frequency	Error Pattern	Frequency
(j)(5)(5) ${ }^{\text {j }}$		0 (1) 0 (1)	1
0 (5)(5)(5)	1	000 (1)	2
00 (5)'5)	1	$0 \quad 0 \quad 0$ (40)	1
0 0 (40) 0	1	0 0 (40) 0	2
(40) 0 (40) 0	1	0 (5) 0 (5)	1
0 (40) (\%) 0	2	$0 \quad 0 \quad 0$	10
$0 \quad 0 \quad 0 \text { (40) }$	2	Total No. of S	17

(40)(16)(40)(5) 1
0 (5)(16)(16) 1
0 (16)(16) $0 \quad 1$
$\begin{array}{llll}0 & 0 & 0 & 6\end{array}$
(19)(19)(19)(19) 1
$0 \cup(19)(19) \quad 1$
0 (19)(19) 0
0 (3)(3)(3) 1
(11)(11)(11)(11) 1
0 (43)(43)(43) 1
(4)(4)(4)(4) 1
(4) $0 \quad 0$ (4) 1
Total Ho. of Stu. 29
answers gotten by using the right rule and of random errors, which is the identical result obtained from the November data.

Insert Table 7 about here
Table 7 shows the eigenvalues of the March data before and after ICI operation was applied. The unidimensionality of the subset improved but not as much as that of the November data. Since the proportion of the number of subjects in Category 2 is $1 / 4$ in the November data while it is $1 / 8$ in the March data, the difference in the increments of the variance accounted for by the fjerst eigenvalues in the two datasets may be explained. The March data, both the original and those modified by ICI ylelded convergence when GETAB was used to eatimate the parameters of the IRT model.

Conclusion

One of the important areas in the theory and practice of educational measurement is that of criterion-referenced testing. The measurement theories that have been utilized in measuring and evaluating the outcomes of treatments (or instruction) typically depend on binary scores obtained from test items. It was customarily assumed that the underlying structure of the dataset from a criterion-referenced test consists of one major common factor because the items are usually selected from a single content domain. However, several studies have shown that the assumption of unidimensionality should be clozely examined even for criterion-referenced tests. This study demonstrated that the dimensionality of a dataset will be affected by the examinee's underlying cognitive processes as well as by the nature of the content domain. The fact is that, after the response patterns yielded by erroneous rules of operation are deleted from the original dataset, the remaining subset of data becomes more nearly unidimensional, and this aubset of course consists of responses yielded by the right rule and non-systematic errors. This observation points to an answer to the question of when and why the dataset of an achievement test satisfies the condition of unidimensionality.

Tables 5 and 6 show that ICI is an effective index for detecting erroneous rules of oeration. However, it requires repeated measures. Since most testa don't have several parallel items to measure the performance of a single task, applicability of ICI to these tests whll be limited. The drawback of this limitation mus be removed, and a solution to this problem is being developed.

Table 7

Eigenvalues and their vardances of the replicated datasets

The Original Dataset	Subset in which low score-high
$N=161$	ICI subjects are deleted. $N=137$

Facior	Eigeqvalues	Variance	Eigenvalue	Variance
1	9.2928	58.0802		
2	1.7834	11.1462		
3	1.0883	6.8018	1.3967	59.2627
4	0.8437	5.2729	0.9202	5.7295
4	0.6985	4.3659	0.8070	5.0439
5	0.4301	2.6879	0.5943	3.7141
6	0.3728	2.3303	0.5155	3.2217
7	0.3331	2.0819	0.4466	2.7911
8	0.2428	1.5178	0.3959	2.4742
9	0.1857	1.1606	0.2905	1.8155
10	0.1747	1.0918	0.2807	1.7543
11	0.1458	0.9115	0.2344	1.4649
12	0.1312	0.8197	0.1806	1.1286
13	0.1172	0.7323	0.1535	0.9906
14	0.0868	0.5423	0.1171	0.7318
15	0.0731	0.4569	0.0999	0.6243
16			0.0803	0.5018

References

Birenbaum, M. \& Tatsuoka, K. K. The use of informatiun from wrong responses in measuring students achievement (Research Report 80-1). Urbana, I11.: University of Illirois, Computer-based Education Research Laboratory, February, 1980.

Brown, J. S., \& Burton, R. R. Diagnostic models for procedural bugs in basic mathematics skills. Cognitive Science, 1978, 2, 155-192.

Cliff, N. A. A theory of consistency of ordering generalizable to tailored testing. Psychometrika, 1971, 375-399.

Davis, R. B. The Madisgn Project discovery in mathematics: a text for teachers. Reading: Addison-Wesley, 1964.

Glaser, R. The future of testing: A research agenda for cognitive psychology and psychometrics. (Technical Report). Pittsburgh, PA.: University Pittsburgh, Spring 1981.

Harnisch, D. L., \& Linn, R. L. Analysis of item response patterns: Questionable test data and dissimilar curriculum practices. The Journal of Educational Measurement, 1981, in press.

Kane, M. T., \& Brennan, R. L. Agreement coefficients as indices of dependability fro domain-refarenced tests. Applied Psychclogical Measurement, 1980, 4, 105-126.

Krus, D. J. Order analysis of binary data matrices. Los Angeles: Theta Press, 1975.

Lord, F. M., \& Novick, M. R. Statistical theories of mental test scores. Reading, Mass.: Addison-Wesley, 1968.

Mokken, R. J. A theory and procedure of scale analysis: With applications in political research. The Hague: Mouton, 1971.

Nitko, A. J. Criterion-Referencing Schemes. In S. T. Mayo (Ed.), New directions for testing and measurement: Interpreting test performance (6). San Francisco, Josey Bass, 1980.

Reckase, M. D. Undfactor latent trait models applied to multifactor tests: Results and implications. Journal of Educational Statistics, Fall 1979, 4(3), pp. 207-230.

Sato, T. Untitled, Unpublished Manuscript, 1972.
Sato, T. The construction and interpretation of S-P tables. Tokyo: Meifi tosho, 1975 (in Japanese).

Takeya, M., A property analysis of an item score atrix in CMI system. Trans IECE, 1977,60, No. 11 (in Japanese).

Tatsuoka, K. K. An approach to assessing the seriousness of error types and predictability of future performance (Research Report 81-1). Urbana, Ill.: University of Illinols, Computer-based Education Research Laboratory, February 1981.

Tatsuoka, K. K., \& Birenbaum, M. The danger of relying solely on diagnostic adaptive testing when prior and subsequent instructional methods are different (CERL Report E-5). Urbana, Ill.: University of Illinois, Computer-based Education Research Laboratory, March 1979.

Tatsuoka, K. K. \& Birenbaum, M. The effect of different instructional methods on achievement tests. Journal of Computer-based Instruction in press.

Tatsuoka, K. K., \& Linn, R. L. Indices for detecting unusual response patterns: Links between two general approaches and potential applications (Res earch Report 81-5). Urbana, Ill.: University of Illino1s, Computer-based Education Laboratory, August 1981.

Tatsuoka, K. K., \& Tatsuoka, M. M. Spotting erroneous rules of operation by the Individual Consistency Index (Research Report 81-4). Urbana, Ill.: University of Illinois, Computer-based r.ducation Research Laboratory, August, 1981.

Tatsuoka, K. K., Birenbaum, M., Tatsuokd, M. M., \& Baillie, R. A psychometric approach to error analysis on response patterns (Research Report 80-3). Urbana, Ill.: University of Illinois, Computer-based Education Research Laboratory, February 1980.

Tatsuoka, M. M. Recent psychometric developments in Japan: Engineers grapple with educational measurement problems. Paper presented at the ONR Contractors Meeting on Individual Measurement, Columbia, Missouri, 1978.
van der Flier, H. Environmental factors and deviant response patterns. In Y. H. Poortinga (Ed.), Basic problems in cross cultural psychology. Amsterdam: Swets and Seitlinger, B.V., 1977.

Yamamoto, Y., \& Wise, S. Extracting unidimensional chains from uultidimensional datasets: A graph theory approach (Research Report 80-2). Urbana, Ill.: University of Illinois, Computer-based Education Research Laboratory, 1980.
I. The signed-number test used in the January experiment
II. A list of the bugs found in the signed-number addition and subtraction problems
III. Observed complete erroneous rules of operations, tileir descriptions and codes given in Appendix II
IV. Forty-five rules described in Appendix IIIand tieir component scores based on the test in Appendix V
V. The signed-number test used in the March experiment

Appendix I
The Signed-Number Test used in the January Experiment

		Test Itens				
I	II		III		IV	
1. $-6-(-8)=2$	17.	$-1-(-10)=9$	33.	$-3-(-5)=2$	49.	$-2-(-11)=9$
2. $-7-9=-16$	18.	$-2-11=-13$	34.	$-4-6=-10$	50.	$-5-14=-19$
3. $12+-3=9$	19.	$7+5=2$	35.	15+6-9	51.	$4+-2=2$
4. $1-(-10)=11$		$3-(-12)=15$	36.	$5-(-7)=12$	52.	$6-(-3)=14$
5. $-3+12=9$	21.	$-1!10=9$	37.	$-4+13=9$	53.	$-2+11=9$
7. 8-6=2	23.	7-5=2	39.	$4-2=2$	55.	$9-7=2$
8. $-16-(-7)=-9$	24.	$-12-(-10)=-2$	40.	$-11-(-2)=-9$	56.	$-7-(-5)=-2$
10. $-14+5=-19$	26.	$-10+-1=-11$		$-7+-5=-12$	38.	$-10+-8=-18$
11. $3+5=-2$	27.	$2+-11=-9-$	43.	$6+-9=-2$	59.	$1+-10=-9$
12. 13-(-4)=17		$0-(-9)=9$	44.	$6-(-4)=10$	60.	$0-(-2)=2$
13. $-3-+12=-15$	29.	$-2-+11=-13$	45.	$-7-y=-16$	61.	$-4-6=-10$
15. $-6+4=-2$		- $-5+3=-2$		$-4+2=-2$	63.	$-4+6=-2$
16. $2-11=-9$	32.	$5-14=-9$		$7-16=-9$	64.	$4-13=-9$

Appendix II
A List of "Bugs" Found in the Sign-numbered Addition and
Subtraction Problems (Verbal Rules)

	Code	Incomplete Rule (in terms of sign operation)
1.	21	Taking the sign of the larger absolute number to answers (i.e., take the correct sign in addition problems.)
		-
2.	22	Taking the sign of the smaller absolute number to answers
3.	23	Taking always a + sign to answers
4.	24	Taking always a - sign to answers
5.	25	Taking the sign of the first number
6.	26	Taking the sign of the second number
7.	$4 i$	Taking the sign of the product of the two numbers
8.	28	Taking the sign of the lerger number (as an integer) to answers
9.	29	Taking the gign of the smaller number (as an integer) to answers.
10.	210	Treat the operation sign as the aign of the second number, if the sign of the second number is explicit. Then take the sign of the larger absolute values to answers.
11.	211	Besides the bug described in 210, if the sign of the larger absolute value is the first number fith an implicit sign, then take the explicit sign or the sign obtained by the 210 bug to answers
12.	212	The si'se as bug 210 except ake the sign of the larger integer.
13.	213	Basically follow the right rule, but when the sign of the larger absolute value is implicit and also is the second number, then take the sign of the other number to answers.

(cont.)

```
Appendix II (cont.)
```

	Code	Incomplete Rule (in terms of sign operation)
14.	214	Basically follow the bug of code ?o, but when the larger integer is the second number and its sign is implicit, then take the sign of the other number.
15.	215	For the addition problems, if the 8 ign of the second number is implicit, then apply the regular arithmetic operation. For example, -L+S has a wrong sign. For the subtraction problems, the implicit sign of the second number remains unchanged when they converted to addition problems, and regular arithmetic operation is applied but -L+S type has a wrong sign.
16.	210°	Change the explicit sign of the second number, then take the sign of the larger absolure value.
17.	217	Change the explicit sign of the second number, then take the sign of the larger integer
18.	218	Change the sign of the second number and take the sign of the larger absolute value. Treat all problems as *subtraction problems.
19.	219	Change the sign of the second number and take the sign of the larger integer value. Treat all problems as subtraction problems.

	Code	Incomplete Rules (in terms of absolute value operation)
1.	11	If the signs of two numbers are same, th_{r} a add the absolute values of the two numbers. If the signs of two numbers are different, then subtract the smaller absolute value from the larger absolute value
2.	12	In spite of different skill types, the absolute values of the two numbers are always added.
3.	13	No matter what the skil' types are, the smaller absolute value is subtracted from the larger absolute value.
4.	14	Opposite of the right operation, i.e., $\pm f$ the signs of two number are same, then subtract, $\|\mathrm{L}\|-\|\mathrm{S}\|$. If the signs of two numbers are different then add the absolute values of the two numbers, $\|\mathrm{L}\|+\|\mathrm{s}\|$.
5.	15	If the sign of the first number is positive, + , then $\|\mathrm{L}\|+\|\mathrm{S}\|$. If the sign of the firgt number is negative, - , then $\|\mathrm{L}\|$ - $\|\mathrm{s}\|$.
6.	16	If the sign of the second number is positive, + , then $\|i\|+\|s\|$ and if the sign of the second number is negative, - , then $\|\mathrm{L}\|-\|s\|$.
	17	If the sign of the first number is positive, then $\|L\|-\|S\|$ and if 1 : is negative, then $\|L\|+\|S\|$.
8.	18	If the absolute .diue of the first number is larger, then $\|L\|+\|S\|$ and if it is smaller, then $\|L\|-\|S\|$.
9.	19	If the absolute value of the first number is larger, then $\|\mathrm{L}\|+\|\mathrm{s}\|$.
10.	110	If the first number is larger as an integer, then $\|\mathrm{L}\|+\|\mathrm{S}\|$. If it is smaller then $\|\mathrm{L}\|-\|\mathrm{S}\|$.
11.	111	If the first number is larger as an integer, then $\|L\|-\|S\|$ and if its not then add the two absolute values.
12.	112	Changing the sign of the second number, then applying the right rule 11.

Appendix II (cont.)
Subtraction Problems
(?roblems in the conversion of subtraction to addition)

Code

1.	31	Coinvert the operation sign - to + and change the sign of the second number.
2.	32	Convert tie operation sign - to + and don't change the sign of the second number
3.	33	Convert the operation sign - to + and change the sign of the first number
4.	34	Convert the operation sign - to + and change both the signs of the two numbers
5.	35	Convert the operation sign - to + and change the sign of the second number. At the same time, if the stgh of the first number is negative, -, then it will be changed to + .
6.	36	Convert the operation sign - to + but don't change the sign of the second number. At the same time, if the sign of the first number and second numbers are negative, then change the signs to + . Thus, task $-L-(-S)$ is converted to $+\mathrm{L}+(+\mathrm{S})$.

Appendix II (cont.)

Skill Types Conv. 31 Original 31 Conv. ${ }^{2}$ Conv. 33 Conv. 34 Conv. 35

12+-3	3	12+-3	L+-S								
-3+12	5	$-3+12$	-S+L								
-14+-5	10	$-14+-5$	-L+-S								
3+5	11	3+5	S+-L								
-5t-7	14	-5+-7	-St-L								
-6+4	15	-6+4	-L+S								
-6-(-8)	1	$-6+(+8)$	-S-(-L) $\rightarrow-\mathrm{S}+(+\mathrm{L})$	5	-S+(-L)	14	+S+(-L)	11	St(+ L)	0	+S+(+L)
-7-9	2	-7+-9	-S-L \rightarrow-St-L	14	-S+L	5	+S+L	0	St-L	11	S+L
1-(-10)	4	$1+(+10)$	$\mathrm{S}-(-\mathrm{L})+\mathrm{S}+(+\mathrm{L})$	0	S+(-L)	11	-S+(-L)	14	-s+(+L)	5	S+(+L)
8-5	7	8+6	L-S \rightarrow L+S	3	L+S	0	-L+S	15	-L+-S	10	L+S
-16-(-7)	8	$-16+(+7)$	$-S-(-S) \rightarrow-L+(+S)$	15	- +(-s)	10	L+(-S)	3	+L+(+S)	\bigcirc	L+(+S)
-12-3	9	$-12+3$	-L-S $\rightarrow-\mathrm{L}+\mathrm{S}$	10	-L+S	15	L+S	0	+L+	3	L+S
9-(-7)	12	9+(+7)	$\mathrm{L}-(-\mathrm{S}) \rightarrow \mathrm{L}+(+\mathrm{S})$	0	L+(-s)	3	-L+(-S)	10	-L+(+S) 1	15	$L+(+S)$
-3-+12	13	-3+-12	-S-+L \rightarrow-S+-L	14	-S++L	5	S++L	11	+S+L	11	S+L
2-11	16	2+-11	S-L \rightarrow S+-L	11	S+L	0	-S++L	14	-S+-L	14	S+L
-13-+4		$-13+-4$	$-\mathrm{L}-\mathrm{S}$ - $\rightarrow-\mathrm{L}+\mathrm{S}$	10	-L++S	10	L++S	3	+L+-S	3	L+-S
13-+15		$13+-15$	S-+L \rightarrow S+-L	11	S++L	0	-S++L	5	-S+-1	14	S+-L

$0: \quad \mathrm{L}+\mathrm{S}=\mathrm{S}+\mathrm{L}$

Appendix II (cont.)

Subtraction Problems

Having Hidden Signs and Parentheses (Interpretation of the problems)
hs

Paf The parentheses are treated as absolute value symbols after any conversion occurs.
When the sign of the second number is implicit, the sign of the second number is ignored. Thus, the sign of the second number remains the same although the operation sign "-" is changed to " + ". This error appears in all 4 types of problems, $L-S, S-L,-L-S$ and $-S-L$.

In the above mentioned case, $L-S$ and $S-L$ are carried out by regular arithmetic but $-L+S$ and $-S-L$ will be converted to $-L+S$ and $-S+L$ respectively.
$L-S$ and S - L are treated as regular arithmetic problems. The implicit signs of the skill types $-L-S,-S-L$ are not ignnred. So they are changed to $-L+-S$ $-S+-L$ respectively

The parentheses of the problems are interpreted as absolute value symbols before any conversion of subtraction to addition.

Besides L - S and S - L types, students apply regular arithmetic operations to (-L) - (-S) and (-S) - (-L) types and get wrong signs for $S-L$ and/or (-S) - (-L).

The operation sign in the task -L - S is recognized as the sign of the second number. So when a student converts subtraction problems to addition problems, insert a + sign before tie second minus sign, rigint after the larger number L. So this task will gield the task type, $-\mathrm{L}+-\mathrm{S}$.

Appendix III
Observed Complete Erroneous Rules of Operations
Their Descriptions and Codes Given in Appendix II

1. $(11,21)(31)(11,21)$

The right rule for addition problems, (11,21) -- add the absolute values of two numbers if the signs of the numbers are same, or subtract the smaller absolute value from the larger one if the signs are alike and take the sign of the larger number to the answer. Then convert subtraction problems into addition ones by changing the operation sign - to + and the sign of the second number to a opposite sign. Carry out the right addition operation on the newly converted additon problems.
2. $(11,21)(31) \operatorname{Paf}(11,21)$

The right rules for addition problems, and right conversion (31) is carried out but the numbers in the parenthesis are changed to positive numbers, then the right rule for addition is used for the new addition problems.

3. (11,21) Pbf(31)(11,21)

The numbers in the parenthesis are changed to positive before subtraction problems are converted to addition problems.
4. $(11,25)(31)(11,25)$

Ine student takes the right absolute value in answers for addition problems. For subtraction problems, the student converts subtraction to addition correctly but applies the same wrong rule.
5. $(11,21)(32)(11,21)$

The right rule, for taking the proper absolute value and the sign of the larger absolute value, is used for addition problems. For subtraction problems a student changes the operation sign of - to + without changing the sign of the second number then applies the right rule for addition problems. The code is expressed by (11,21) for addition, conversion error (32) and the right rule (11,21) again. Thus, this big is (11,21)(32)(11,21).
6. $(11,21)(32) a(11,21)$

The addition problems are right, but subtraction problems are converted in a wrong way -- by changing operation signs, -, to plus, + , except for the problems types $L-S$ and S - L. The latter two tasks are answered by a regular arithmetic method. The other converted tasks are answered by using the right rule.
7. $(11,21)(32) \mathrm{ha}(11,21)$

Apply the right addition rule and converts most subtraction probleas by applying (32) -- changes operation signs to plus but doesn't change the signs of the second number -- but -L - S type. Operation + is inserted right after the larger number L. So the problem becomes -L + -S type.
8. (11,21)(32)hoa(11,21)

This bug is a coabination of bugs (11,21)(32)a(11,21) and (11,21)(32)ho(11,21). That $18,-L-S$ type was changed to $-L+-S$, and, moreover, L-S and S - L types were answered by a regular arithmetic nethod.
9. $(11,21)(36)(11,21)$

After all subtraction problems are converted to addition problems according to the rule (36)-convert the operation sign - to + , without changing the sign of the second number. At the same time, if there are three minuses such as -L-(-S), then all minuses will be plus. Thus $+L+(+S)$ is the converted problem type.
10. $(11,21)(33)(11,21)$

Convert subtraction problems into addition problems but change the sign of the first number instead of the second number. The right addition rule was applied before and after the conversion.
11. $(11,21)(31) \mathrm{hs}(11,21)$

When subtraction problems are converted to addition, hidden signs of the second numbers are ignored, so they are not changed to negative. Thus -L - S, -S - L, S - L, L - S resulted in wrong answers.
12. (11,21)(31)hsa(11,21)

L-S and S - L types are answered by a regular arithmetic method without being converted, but - L - S and -S - L are converted to - L + S and $-S+L$, resulting in wrong answers.
13. (11,21)(32)Pbf(11,21)

Before subtraction problems are converted, the parenthesis in the problems are considered as an absolute value notation and the numbers in the parenthesis are changed to positive numbers before the conversion (32) is taken -
14. (11,21)(32)Paf(11,21)

The numbers in the parenthesis are changed to be positive numbers after subtraction problems are converted to addition problems according to the wrong rule (32).
15. (11,21)(32)hoPaf(11,21)
-L - S and -S - L types resulted in right conversion even though the wrong conversion rule (32) was applied. Then the problems with parenthesis are changed to be positive.
16. $(11,21)(13,21)$ \{or $(11,21)(32)(13,21)\}$

A student used the right rule for addition problems but he/she subtracted two numbers, $|\mathrm{L}|-|S|$, and took the sign of the larger absolute value.

17. (11,21)Paf(13,21)

After carrying out the rule 13, subtracting two numbers, the numbers in the parenthesis are changed to positive numbers then the rule (21) is used for taking the sign to answers.
18. (11,21)ho(13,21)

Por -L - S type, having a hidden sign for the second number, a student treated operation sign - as the sign of the second number.
19. $(12,21)(31)(12,21)$

Subtraction problens are converted to addition problems by the right conversion rule but an erroneous rule for addition problem, (12,21) are applied consistently both before and after the conversion.
20. $(13,21)(31)(13,21)$

The operation of converting subtractin to addition is carried out correctly but a wrong rule (13,21)-- always subtracting two numbers, |L| - |S| and taking the sign of the larger absolute value- was applied throughout the problems.
21. (11,21)(12,24)

The conversion of subtraction was not carried out. For addition, the right rule was used, but for subtraction problems, two numbers are added and a minus sign was taken to the snswers.
22. $(11,21)(13,24)$

The conversion of subtraction was not carried out. The rule (11,21) for addition, the rule $(13,24)$ for subtraction problems.
23. $(13,21)(13,21)$

The conversion of subtraction was oultted and two numbers are always subtracted and the sign of the larger absolute value was always taken to answers.
24. $(13,21)(13,24)$

The conversion was omitted and erroneous rules (13,21) for addition problems, $(13,24)$ for subtraction problems are used.
25. $(13,21)(32) a(11,21)$

Por addition problems, the wrong rule $(13,21)$ is used. The conversion is again wrong (32). L-S and S - Lare answered by a regular arithmetic method. The rest of the newly converted addition problems are answered by the right rule
26. $(13,24)(13,24)$

The same rule, $|L|-|S|$ and the sign, -, to answers.
27. $(12,24)(13,24)$

The conversion operation is Agnored. Add two numbers for addition, subtract two numbers $|L|-|S|$ for subtraction problems. The sign, -, is always taken to answers.
28. $(12,23)(13,24)$

No conversion is nade. The two numbers are added for addition problems and subtracted for subtraction problems. The sign, + , is always taken to answers for addition while the sign, -, is always taken for subtraction probleas.
29. $(13,23)(13,24)$

Ne conversion is made. The two numbers are always subtracted, |L| - |S| but + for addition problens and, -, for problems are taken to answers.
30. $(13,25)(13,25)$

No conversion is made. The two numbers are always subtracted, $|\mathrm{L}|-|S|$ and the sign of the first number is taken to answers.
31. $(13,25)(13,24)$

No conversion is made. The two numbers are always subtracted |L| - |S|. The sign of the first number is taken to answers for addition problems and a minus sign is always taken for subtraction problems.
32. $(13,23)(13,23)$

No conversion is maad. The two numbers are always subtracted, |L|

- |S|. The sign, +, is always taken to answers.

33. $(12,25)(13,25)$

No conversion is made. The two numbers are added for addition and subtracted for subtraction problems. The sign of the first number is taken to answers for both the addition and subtraction problems.
34. $(15,25)(15,25)$

The operation of converting subtraction to addition problems is ignored. Instead, this student added two numbers, $|\mathrm{L}|+|S|$, if the sign of the first number is positive. He subtracted, |L| - |S| if the sign of the first number is negative. He used this rule for both the addition and subtraction problems.
35. $(15,25)(13,24)$

For addition problems, the same rule as the previous example is applied but for subtraction problems, he subtracts two numbers, |L| - |S| and takes a minus sign.
36. $(16,23)(13,23)$

For addition problems, if the sign of the second number is positive then two absolute values are added, $|\mathrm{L}|+|S|$ and if it is negative, then the two absolute values are subtracted, |L| - |S|. For subtraction fableas, the two numbers are always subtracted atd a positive sign, + , is always chosen for the sign to answers.
37. $(16,26)$ ho $(16,26)$

For addition problems, the absolute values of answers are the same as the previous example of $(16,23)$. But the sign of the answers is the sign of the secord number. For subtraction problems, the same rule as addition is used, but - L - S or -S - L types where the sign of the second number is implicit, then operation sign is considered as the sign of the second number.
38. $(17,21)(17.21)$

For addition and subtraction problems, if the sign of the first number is + , then $|L|-|S|$ and if it is negative, then $|L|+|S|$. But the sign of the larger absolute value is taken to answers.
39. $(12,21)(13,21)$

For addition problems, absolute values of the two numbers are always added and the sign of the Jarger number is taken to answers. For subtraction prob' s, two absolute values are always subtracted and the sign of the largt number is taken to answers.
40. $(12,21)$ Ai $(13,21)$

The right rule for addition problems. For subtraction problems, $\mathrm{L}-\mathrm{S}, \mathrm{S}-\mathrm{L},-\mathrm{L}-(-\mathrm{S})$ and -S - (-L) types are answered by using a regular arithmetic method but the signs of answers are not always correct. All other problems are answered by (13,21)-rule. No conversion of subtraction to addition problems was made.
41. (32)(11,21)(31)(11,21)

Subtraction problems are correctly converted by the rule (31), and answered correctly by using the right rule of addition problems. But addition problems are also converted by changing the sign of the second number and answered by the right rule.
42. $(13,21)(31)(12,21)$

In addition problems, the student finds the difference between the two numbers and assigns the sign of the larger absolute value to the result. In subtraction, converts subtraction to addition by Rule (31) which is right, then adds the two absolute values and takes the sign of the larger absolute value from the converted addition problems to answers.
43. $(11,27)(13,24)$

If two numbers have two similar signs, then the two absolute values are added and sign of multiplication is taken to the result. If two numbers have different signs, then $|L|-|S|$ as :he absolute value and a minus sign to the anewer.
44. $(11,21)(34)(11,21)$

In subtraction, the student changes the signs of both numbers as well as the operation sign and carries out the right rule for addition problems.
45. $(11,21)(36)(13,21)$

In subtraction, the two absolute values are subtracted and the sign of the larger number is taken to the result after conversion rule (36) is applied.

45 Rules Described in Appendix III and Their Components Scores Based on the Test in Appendix V

Item	Task	3	4	5	6	7/8	9	10	11	12	13	14	15	16
3	14+-7=+7													
5	-4+13-+9													
10	-16+-3--19													
11	2+-8=-6													
14	$-6+9=-15$													
15	-8+5--3													
		a b c												
1	-3-(-7)=+4	000	111	000	000	000	100	010	111	111	000	111	111	010
2	$-2-8=-10$	111	000	000	000	111	000	010	000	000	000	000	111	000
4	$5-(-12)=+17$	000	111	000	000	000	000	010	111	111	000	111	111	000
6	-11-+8=-19	111	111	100	100	100	100	010	111	111	100	100	100	100
7	9-4=+5	111	100	100	111	111	100	010	100	111	100	100	111	1111
8	-15-(-9) $=-6$	100	1111	100	100	100	000	010	111	111	010	$1 \begin{array}{lll}1 & 1 & 1\end{array}$	1111	111
	$-13-5=-18$	111	100	100	100	111	100	010	100	010	100	000	111	100
12	8-(-6) $=+14$	103	1111	100	100	100	100	010	$1 \begin{array}{lll}1 & 1 & 1\end{array}$	1111	100	$\begin{array}{lll}1 & 1 & 1\end{array}$	$1 \begin{array}{lll}1 & 1 & 1\end{array}$	100
13	-5-+11=-16	111	1111	000	000	0000	000	010	111	111	000	000	000	0000
16	1-10=-9	111	000	000	111	111	000	010	000	111	000	000	111	010

a Sign component scores are in the first column
nbsolute value component scores are in the second column
Regular scores (multiplication of the first and second numbers)
Response patterns of iule 40 are obtained by assuming S-L type has a wrong sign.

Appendix IV (cont.)

17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
		000	010	111	111	010	010	010	111	100	000	010	010	010
		100	111	111	111	1111	111	111	010	000	100	111	010	010
		111	100	111	111	100	100	100	107	1111	010	000	100	100
		100	111	111	111	$\begin{array}{lll}1 & 1 & 1\end{array}$	111	111	111	100	000	010	010	010
		111	100	1111	1111	100	100	100	100	111	010	000	100	100
		100	111	111	111	$11^{\circ} 1$	111	211	111	100	000	010	111	1111
111	010	100	111	000	010	010	010	000	010	010	010	010	0100	010
000	100	111	100	$11: 1$	100	000	$1 \cap 0$	000	100	100	100	100	100	100
100	000	111	100	010	000	000	000	000	000	000	000	030	107	000
100	100	111	100	111	100	100	100	100	100	100	100	100	100	100
111	111	100	1111	000	010	$1 \begin{array}{lll}1 & 1 & 1\end{array}$	010	111^{-}	010	010	010	010	1111	010
111	111	100	1111	100	111	1111	1111	100	111	111	$\begin{array}{lll}1 & 1 & 1\end{array}$	1111	$1 \begin{array}{lll}1 & 1 & 1\end{array}$	$1 \begin{array}{lll}1 & 1 & 1\end{array}$
100	100	111	100	111	100	100	100	100	100	100	100	100	100	100
100	100	111	100	0110	000	100	000	100	000	000	000	000	100	000
000	000	11 i	100	111	100	000	100	000	100	100	100	100	100	100
010	010	100	111	100	111	010	111	111	111	111	111	111	010	111

32	33	34	35	36	37	38	39	40*	41	42	43	44	45
010	000	000	000	010	111	010	000	1111	000	010	111	111	111
111	100	010	010	100	100	100	100	1111	000	$1 \begin{array}{lll}1 & 1 & 1\end{array}$	0110	111	$1 \begin{array}{lll}1 & 1 & 1\end{array}$
ט 00	111	100	100	000	100	111	111	$1 \begin{array}{lll}1 & 1 & 1\end{array}$	100	100	010	$1 \begin{array}{lll}1 & 1 & 1\end{array}$	$\begin{array}{lll}1 & 1 & 1\end{array}$
010	000	000	000	010	$1 \begin{array}{lll}1 & 1 & 1\end{array}$	111	100	1111	000	$1 \begin{array}{lll}1 & 1 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1\end{array}$	$1 \begin{array}{lll}1 & 1 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1\end{array}$
000	111	100	100	000	100	111	111	$1 \begin{array}{lll}1 & 1 & 1\end{array}$	000	100	010	$1 \begin{array}{lll}1 & 1 & 1\end{array}$	$\begin{array}{lll}1 & 1 & 1\end{array}$
011	100	111	111	000	100	100	100	111	100	111	111	111	111
111	010	010	010	111	010	000	010	11	111	100	100	100	100
000	100	.100	100	000	100	1111	000	0	1111	111	100	100	$\begin{array}{lll}1 & 1 & 1\end{array}$
100	100	111	000	100	000	000	000	000	111	$\begin{array}{lll}1 & 1 & 1\end{array}$	000	100	000
000	100	100	100	000	010	111	100	100	111	$1 \begin{array}{lll}1 & 1 & 1\end{array}$	100	010	100
$\begin{array}{lll}1 & 1 & 1\end{array}$	1111	100	0110	111	010	111	111	$1 \begin{array}{lll}1 & 1 & 1\end{array}$	1111	120	100	000	100
010	1111	$\begin{array}{lll}1 & 1 & 1\end{array}$	$1 \begin{array}{lll}1 & 1 & 1\end{array}$	010	$\begin{array}{lll}1 & 1 & 1\end{array}$	100	1111	$1 \begin{array}{lll}1 & 1 & 1\end{array}$	1111	100	000	070	000
000	100	000	100	000	100	1111	100	100	1111	1111	100	000	$\begin{array}{llll}1 & 1 & 1\end{array}$
100	$1 \begin{array}{lll}1 & 0 & 0\end{array}$	$\begin{array}{lll}1 & 1 & 1\end{array}$	$\begin{array}{llll}0 & 0 & 0\end{array}$	1000	000	100	$1 \begin{array}{lll}1 & 0 & 0\end{array}$	$\begin{array}{lll}1 & 0 & 0\end{array}$	$\begin{array}{llll}1 & 1 & 1\end{array}$	$\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1\end{array}$	$\begin{array}{llll}0 & 0 & 0 \\ 1 & 0 & 0\end{array}$	$\begin{array}{lll}0 & 0 & 0\end{array}$	$\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0\end{array}$
0000	$1 \begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}$	100	100	000	0		$\begin{array}{lll}0 & 0 & 0\end{array}$	$\begin{array}{llll}0 & 0 & 0\end{array}$	$\begin{array}{lll}1 & 1 & 1\end{array}$	$\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & \end{array}$	$\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0\end{array}$	$\begin{array}{lll}1 & 0 & 0\end{array}$	$\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}$
010	010	000	111	010	111	010	010	010	111	100	000	100	00

Appendix V
The Signed-Number Test
The March data

Distribution List

Navy

1 Meryl S. 'Baker NPRDC
Code P309
San Diego, CA 92152
1 Dr. Jack R. Bursting
Provost \& Academic Dean
U.S. Naval Postgraduate School

Monterey. CA 93940
1 Dr. Robert Beaux
Code N-711
NAVTRAEQUIPCEN
Orlando, FL 32813
1 Chief of Navalritication and Training Liason Office
Air Force Human Resource Laboratory Flying Training Division
WILLIAMS AFB, AZ 85° Er

1 CDA Mike Currant
Office of Naval Research
800 N. Quincy St.
Code 270
Arlin igton, VA 222i7
1 DR. PAT FEDERICO
NAVY PERSONNEL F: OD CENTER
SAN DIEGO, CA 92152
Mr. Paul Foley
Navy Personnel R\&D Center
San Di ago. CA 92152
1 Dr. John Ford
Navy Personnel R\&D Center
San Diego., CA 92152
1 Dr. Norman J. Kerr
Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millingtor. TN 38051
1 Dr. William L. Mayo\%
Principal Civilian Advisor for
Education and Training
Naval Training Command, Coc'e 00A
Pensacola, FL 32503

Navy

1 CAPT Richard L. Martin, USN
Prospective Commanding officer
USS Carl Vinson (CVN-70)
Newport News Shipbuilding and Drydock Co
Newport News, VA 23607
1 Dr. James McBride
Navy Personnel R\&D Center
San Diego, CA 92152
1 Dr William Montague
Navy Personnel R\&D Center
San Diego. CA 92152
1 Ted M. I. Yellen
Technical Information office, Code 201
NAVY PERSONNEL R\&D CENTER
SAN DIEGO, CA 92152
1 Library, Code P201L
Navy Personnel R\&D Center
San Diego. CA 92152
6 Commanding officer
Naval Research Laboratory
Code 2627
liashington, DC 20390
1 Psychologist
ONR Branch Office
Bldg 114. Section D
666 Summer Street
Boston, MA 02210
? Psychologist
ONR West
1030 East Green St.
Pasadena, CA 91106
1 Office of Naval Research (442 PT)
80 C N. Quincy Street
Arlington, VA 22217
5 Personnel \& Training Research Programs (442 PT)
Office of Naval Research
Ar] Ington, VA 22217

Navy

Mavy

1 Psychologist
ONR Branch Office
1030 East Green Street
Pasadena. CA 91101

1 Office of the Chief of Naval Operations
Research Development \& Siwdies Branch (OP-115)
Washington, DC 20350
1 LT Frank C. Petho, MSC, USN (Ph.D)
Selection and Training Research Division
Human Performance Sciences Dept.
Naval Aerospace Medical Research Laborat
Pensacola, FL 32508
1 Dr. Bernard Riml and (03B)
Navy Personnel Rad Center
San Diego, CA 92152
1 Dr. Worth Scanland. Director
Research, Development. Test \& Evaluation N-5
Naval Education and Training Command MAS, Pensacola, FL 32508

1 Dr. Robert G. Smith
Office of Chief of Naval Operations OP-987H
Washington, DC 20350
1 Dr. Alfred F. Smode
Training Analysis \& Evaluation Group (TAEG)
Dept. of the Navy
Orl ando, FL. 32813

1 Dr. Richard Sorensen
Mavy Personnel R\&D Center
San Diego, CA 92152
1 Dr. Ronald Weitman
Code 54 WZ
Department of Administrative Sciences
U. S. Naval Postgraduate School

Monterey, CA 93940
i Mr John H. Wolfe
Code 2310
U. S. Navy Personnel Research and Development Center
San Diego, CA 92152

1 Dr. Robert Wisher
Code 309
Navy Personnel R\&D Center
San Diego. CA 92152
DR. MARTIN F. WISKOFF
NAVY PERSONNEL R\& D CENTER
SAN DIEGO. CA 92153
Army

1 Technical Director
U. S. Army Research Institute for the Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333
1 Dr. Beatrice J. Farr
U. S. Army Research Institute

5001 Eisenhower Avenue
Alexandria, VA 22333
1 Dr. Myron Fischl
U.S. Army Research Institute for the Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, Vh 22333
1 Dr. Dexter Fletcher
U.S. Army Research Institute

5001 Ei senhower Avenue
Alexandria, VA 22333
1 Dr. Michael Kaplan
U.S. ARMY RESEARCH INSTITUTE

5001 EISENHCWER AVENUE
ALEXANDRIA, VA 22333
1 Dr: Milton S. Katz
Training Technical Area
U.S. Army Research Institute

5001 Eisenhower Avenue
Alexandria, VA 22333
1 Dr. Harold F. O'Neil, Jr.
Attn: PEP.I-OK
Army Research Institute
5001 Eisenho:er Avenue
Alexandria, VA 22333

1 Mr. Robert Ross
U.S. Army Research Institute for the Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

Alr Force

1 Air Force Human Resources Lab AFHRL/MPD
 Brooks AFB, TX 78235

1 U.S. Air Force Office of Scientific Re search
Life Sciences ixirectorate, NL
Bolling Air Force Base
Washington, DC 20332
1 Dr. Earl A. Alluisi
HQ, AFHRL (AFSC)
Brooks AFB, TX 78235
1 Dr. Genevieve Haddad
Program Manager
Life S:iences Directorate
AFOSR
Bolling AFB, DC 20332
1 Research and Measurment Division
Research Branch, AFMPC/MPCYPR
Randol ph AFB, TX 78148
i Dr. Mal colm Ree
AFHRL/MP
Brooks AFB, Tr. 78235
1 Dr. Marty Rockway
Technical Director
AFHRL(OT)
Williams AFB, AZ 58224

Army

1 Dr. Robert Sasmor
U. S. Army Research Institute for the Behavioral and Social Sciences
5001 Eisenhower Avenue
A.exandria, VA 22333

1 Dr. Frederick Steinheiser
Dept. of Navy
Chief of Naval Operations
OP-113
Washington, DC 20350
1 Dr. Josept Ward
U.S. Army Research Institure

5001 Eisenhoter Avenue
Alexandria, VA 22333

Marines

1 H. William Greenup
Education Advisor (E031)
Education Center, MCDEC
Quantico, VA 22134
1 Major Howard Langdon
Headquarters, Marine Corps
OTTI 31
Arlington Annex
Columbia Pike at Arlington Ridge Ad.
Arlington, VA 20380
1 Director, office oi Manpower Utilization HQ, Marine Corps (MPU)
BCB, Bldg. 2009
Quantico, VA 22134
1 Headquarters, U. S. Marine Corps
Code MPI-20
Washington, DC 20380
1 Special Assistant for Marine Corps Matters
Code 100M
Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217
1 Major Michael L. Patrow, USMC
Headquarters, Marine Corps
(Code MPI-20)
Washington, DC 20380
1 DR. A.L. SLAFKOSKY
SCIENTIFIC ADVISOR (CODE RD-1)
HQ. U.S. MARINE CORPS
WASHINGTON, DC 20380

CoastGuard

Chief, Psychological Reserch Branch
U. S. Coast Guard (G-P-1/2/TP42)

Washington, DC 20593
1 Dr. Thomas A. Warm
U.S. Coast Guard Institute
P.O. Substation 18

Okle:mma City, of 73169

1 Dr. Walter Bogan
4615 N. Park Ave, apt. 1611
Chevy Chase, MD 20015

1 Dr. Ear 1 Hunt
Dept. of Psychology
University of Washington
Seattle, WA 98105
1 Dr. Jack Hunter 2122 Coolidge St.
Lansing, MI 48906
1 Dr . Huynh Huynh
College of Education
University of South Carolina
Columbia. SC 29208
1 Professor John A. Keats University of Newcastle AUSTRALIA 2308

1 Mr. Marlin Kroger
1117 Via Goleta
Palos Verdes Estates, CA 90274
1 Dr. Michael Levine
Department of Educational Psychology 210 Education Bldg. University of Illinois Champaign, IL 61801

1 Dr. Charles Lewis
Faculteit Sociale Wetenschappen
Rijksuniversiteit Groningen
Oude Boteringestraat 23
9712GC Groningen
Netherl ands
1 Dr. Robert Linn
College of Education
University of Illinois
Urbana, IL 61801
1 Dr. Frederick M. Lord Educational Testing Service
Princeton; NJ 08540
1 Dr. Gary Marco Educational Testing Service Princeton, NJ 08450

1 Dr. David McArthur
CSE 145 YOOR Hall
UCLA
Los Angeles, CA 90024

Harry McMahon
Miami-Dade Commatty College
Listrict Administration
11011 S.W. 104 Street
Mami, Florida 33176

1 Dr. Scott Maxwell
Department of Psychology
University of Houston
Houston, TX 77004
1 Dr. Samuel T. Mayo Loyol a University of Chicago 820 North Michigan Avenue Chicago, IL 60611

1 Dr. Melvin R. Novick
356 Lindquist Center for Measurment
University of Iowa
Iowa City. IA 52242
1 Dr. Jesse Orlansky
Institute for Defense Analyses
400 Army Navy Drive
Arlington, VA 22202
1 Wayne M. Patience
American Council on Education
GED Testing Service, Suite 20
One Dupont Cirle, NW
Washington, DC 20036
1 Dr. James A. Paul son
Portl and State University
P.O. Box 751

Portl and, OR 97207
1 MR. LUIGI PETRULLO
2431 N. EDGEWOOD STREET
ARLINGTON, VA 22207
1 DR. DIANE M. RAMSEY-KLEE
R-K RESEARCH \& SYSTEM DESIGN
3947 RIDGEMONT DRIVE
MALIBU, CA 90265
1 MINRAT M. L. RAUCH
P II 4
BUNDESMINISTERIUM DER VERTEIDIGUNG
POSTEACH 1328
D-53 SONN 1, GERMANY
1 Dr. David Miller
Graduate School of Education
UCLA
Los Angeles, CA 90024
1 Dr. Anthony J. Nitko
School of Education Division of Educational Studies University of Pittaburgh
5CO3 Forbes Quandrangle
Pittsburgh, PA 15260

1 Dr. Menucina Birenbaum
School of Education
Tel Aviv University
Ramat Aviv P.O. Box 39040
Tel Aviv 69978
Israel
1 Dr. Norman Cliff
Dept. of Psychology
Univ. of So. California
University Park
Los Angeles, CA 90007
1 Dr. William E. Coffman
Director, Iowa Testing Programs
334 lindquist Center University of Iowa
Iowa City, IA 52242
1 Dr. Allan M. Collins
Bolt Beranek \& Newman, Inc.
50 Moulton Street
Cambridge, Ma 02138
1 Dr. Meredith P. Crawford
Amer ican Psychological Association
1200 17th Street, N.W.
Washington, DC 20036
1 Dr.,Fritz Drasgow
Yale School of Organization and Manageme
Yale University
Box 1A
New Haven, CT 06520
1 Dr . Leonard Feldt
Lindquist Center for Measurment
University of Iowa
Iowa City, IA 52242
1 Dr. Richard L. Ferguson
The American College Testing Program
P.O. Box 168

Iowa City, IA 52240
1 Dr. Victor Fields
Dept. of Psychology
Montgomery College
Rockville, MD 20850
1 Univ. Prof. Dr. Gerhard Fischer
Liebiggasse 5/3
A 1010 Vienna
AUSTRIA
1 Dr. Delwyn Harnisch
ICBD
University of Illinois
51 Gerty Drive
Champaign, Il 61301

1 Dr. Paul A. Games
403D Carpenter
University Park, PA 16802

1 Professor Donald Fitzgerald
University of New England
Armidale, New South Wales 2351 .
AUSTRALIA
1 Dr. Edwin A. Fleishman
Advanced Research Resources Organ.
Suite 900
4330 East West Highway
Washington, DC 20014
1 DR. ROBERT GLASER
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'hara STREET
PITTSBURGH, PA 15213
1 Dr. Bert Green
Johns Hopkins University
Department of Psychology
Charles \& 34th Street
Baltimore, MJ 21218
Dr. Ron Haml ieton
School of Education University of Massechusetts
Amherst, MA 01002
1 Dr. Chester Harris
School of Education University of California
Santa Barbara, CA 93106
1 Dr. Lloyd Humphreys Department of Psychology University of Illinois Champaign, IL 61820

1 Library
Hum RRO/Western Division 27857 Berwick Drive
Carmel, CA 93921
1 Dr. Steven Hunk. Department of Education
University of Alberta
Edmon zon, Alberta
CANADA
1 Dr. Paul Holtzman
Decision Systems
MFI
100 S. Wacker Drive
Ciilcago, IL 60606

Civil Govt

1 Dr. Susan Chipman
Learning and Development
National Institute of Educatio 1200 19th Street NW
Washington, DC 20208
1 Dr. Andrew R. Mol nar
Science Education Dev. and Research
National Science Foundation
Washington, DC 20550
1 Dr. Joseph Psotka
National Institute of Education
1200 19th St. NW
Hashington, DC 20208
1 Dr. Vern W. Urry
Personnel R\&D Center Office of rersonnel Management 1900 E Street NH
Washington, DC 20415

1. Dr. Joseph L. Young, Director

Memory \& Cognitive Processes
National Science Foundation
Washington, DC 20550
Other DoD

12 Defense Technical Information Center
Cameron Station, Bldg 5
Alexandria. VA 22314
Attn: TC
1 Dr. William Graham
Testing Directorate MEPCOM/MEPCT-P
Ft. Sheridan. IL 60037
Military Assistant for Training and Personnel Technology
Office of the Under Secretary of Defense for Researct. \& Engineering
Room 3D129. The Pentagon
Washitiotが, DC 20301
1 Dr. Wayne Sellman
Office of the Assistant Secretary
of Defense (MRA \& L)
28269 The Pentagon
Washington. DC 20301
DARPA
1400 Wilson Blvd. Arlington, VA 22209

1 Dr.James Algina University of Florida
Gainsville, Fl 32611
1 Dr. Erling B. Andersen Department of Statistics Studiestraede 6 1455 Copenhagen DENMARK

1 Dr. John Annett
Department of Psychology
University of Warwick
Coventry CV4 7AL
ENGLAND

11 psychological research unit
Dept. of Defense (Army Office)
Campbell Park Offices
Canberra ACT 2600, Australia
1 Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08450
1 Dr. Werner Birke
DezWPs im Streitkraefteamt
Postfach 205003
D-5300 Bonn 2
WEST GERMANY

1 Liaison Scientists
Office of Naval Research.
Branch Office , London
Box 39 FPO New York 09510
1 Dr. Robert Brennan
American College Testing Programs
P. O. Box 168

Iowa City, IA 52240
1 DR. C. VICTJR BUNDERSON
HICAT INC.
UNIVERSITY PLAZA, SUITE 10
1160 SO. STATE ST.
OREM, UT 84057
1 Dr. John B. Carroll
Psychometric Lab
Univ. of No. Carolina
Davie Hall 013A
Chapel Hill. NC 27514
1 Dr. Deborail Coates
Catholic University
620 Michigan Ave. NE
Washington D.C. 20064

Dr. Mark D. Reckase Educational Psychology Dept. University of Mi ssouri-Columbia 4 Hill Hall
Columbi?, MO 65211

1 Dr. Lauren Resnick LRDC
University of Pittskirgh
3939 0'Hara Street
Pittsburgh, PA 15213
1 Dr. Leonard L. Rosenbaum, Chairman
Department of Psychology
Montgomery College
Rockville, MD 20850
1 Dr. Ernst 2. Rothkopf
Bell Laboratories 600 Mountain Avenue
Murray Hill, NJ 07974
1 Dr. Lawrence Rudner
403 Elm Avenue
Takoma Park. MD 20012
1 Dr.J. Ryan
Department of Education
University of South Carolina
Columbia, SC 29208
1 PROF. FUMIKO SAMEJIMA
DEPT. OF PSYCHOLOGY
UNIVERSITY OF TENNESSEE
KNOXVILLE, TN 37916

1 DR. ROBERT J. SEIDEL
INSTRUCTIONAL TECHHOLOGY GROUP HUMRRO
300 N. WASHINGTON ST.
ALEXANDRIA, VA 22314
1 Dr. Kazuo Shigemasu
University of Tohoku
Department of Educational Psychology
Kawauchi, Sendai 980
JAPAN
1 Paul Holtanan
Decision Systens
: IFI
100 S. Nacker Drive
Cuicago, IL 6.2606
i Evelyn Doody
P.O. Box 1913

Seaside, CA 93955
1 Dr. Drew Malizio
dmerican Council on Education
No. 1 Pont Circle, 20
Washington D.C. 20036

1 Dr. Edwin Shirkey
Department of Psychology
University of Central Florida
Or lando, FL 32816
1 Dr. Richard Snow
Schocl of Education
Stanford University
Stanford, CA 94305
1 Dr. Robert Sternberg
Dept. of Psychology
Yale University
Box 11A, Yale Station
New Haven, CT 06520
1 DR. PATRICK SUPPES
INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CA 94305
1 Dr. Harihar an Swaminathan
Laboratory of Psychometric and Evaluation Research
School of Education
University of Massachusetts
Amherst, MA 01003
1 Dr. Brad Sympson
Psychometric Research Group
Educatiorial Testing Service
Princeton, NJ 08541
1 Dr. David Thissen Department of Psychology
University of Kansas
Lawrence, KS 66044
1 Dr. Robert Tsutakawa
Department of Statistics
University of Missouri
Columbia, MO 65201
1 Dr. Howard Wainer
Division of Psychological Studies
Educational Testing Service
Princeton. NJ 08540
1 DR. SUSAN E. WHITELY
PSYCHOLOGY DEPARTMENT
UNIVERSITY OF KANSAS
LAWRENCE, KANSAS 66044
1 Wolfgang Wildgrube
Streitkraefteamt
Box 205003
D-5300 Bonn 2
1 Dr. Steven Wise
Dept. of Guidance \&Educ. Psych.

- Southern Illinois University

Carbondale, I1 62901

[^0]:

